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Instability of thermocapillary–buoyancy
convection in shallow layers. Part 1.

Characterization of steady and oscillatory
instabilities
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Combined thermocapillary–buoyancy convection in a thin rectangular geometry is
investigated experimentally, with an emphasis on the generation of hydrothermal-
wave instabilities. For sufficiently thin layers, pure hydrothermal waves are observed,
and are found to be oblique as predicted by a previous linear-stability analysis (Smith
& Davis 1983). For thicker layers, both a steady multicell state and an oscillatory
state are found to exist, but the latter is not in the form of a pure hydrothermal wave.

1. Introduction
Thermocapillary convection is bulk fluid motion driven by temperature-induced

interfacial-tension variations. Such flows occur in situations with liquid–liquid or
liquid–gas interfaces which also experience variations in temperature. The case of
interest is that of a free surface between a liquid and a passive gas. For liquids of
interest here, surface tension decreases with increasing temperature, and this effect
is represented by the fluid property γ = −∂σ/∂T , where σ is the surface tension
and T is the temperature of the interface. Through the tangential-stress balance at
the interface, surface-temperature gradients generate an interfacial shear stress which
drives the surface flow in the direction opposite to that of the surface-temperature
gradient. For thermally driven flows, buoyancy forces will also be present, but if
the dimensions of the flow are small enough or if the flow occurs in a microgravity
environment, thermocapillary forces will be dominant. Examples of such flows include
the thermocapillary migration of small bubbles or droplets in a thermal field, and
classical Rayleigh–Bénard convection.

Recently, there has been interest in the role of thermocapillary convection in
processes such as thin-film coating and crystal growth from the melt. Specifically,
in crystal-growth flows there is interest in the instability of steady thermocapillary
convection, leading to oscillatory convection which results in poor crystal quality
brought about by unsteady solidification at the liquid/crystal (freezing) interface
(Gatos 1982). To this end there has been a large amount of research done on a model
of the float-zone crystal-growth process known as the half-zone. In this model, a liquid
bridge is held in place by surface-tension forces between two coaxial cylindrical rods
maintained at different temperatures. Buoyancy is minimized by heating the half-zone
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Figure 1. Problem geometry and coordinate specification.

at the top and cooling at the bottom to provide a stable axial-buoyancy gradient.
The free surface of the liquid bridge is thus subject to a temperature gradient and the
flow in the bulk is driven by the resulting thermocapillary convection.

The first documentation of oscillatory thermocapillary convection in half-zones is
due to Schwabe et al. (1978) and Chun & Wuest (1979). Both groups measured the
oscillating temperature fields in half zones with diameters of a few millimetres and
found oscillations with frequencies of the order of 1 Hz. More in-depth experimental
studies of oscillatory flow in half-zones can be found in the work of Preisser, Schwabe
& Scharmann (1983) and Velten, Schwabe & Scharmann (1991). Recent theoretical
work on the half-zone problem has been performed by Shen et al. (1990), Neitzel
et al. (1991, 1993), Wanschura et al. (1995) and Levenstam & Amberg (1995). The
first two of these studies employ energy-stability theory, the next pair, linear-stability
theory, and the final one, direct numerical simulation of a model half-zone problem.
The results of the various theoretical approaches are in agreement with each other
and in reasonable agreement with available experimental results (see e.g. Velten et al.
1991)) on half-zones.

The flow examined in this work is that of a thin liquid layer of depth d in a
horizontal, rectangular slot driven by both thermocapillary and buoyancy forces as
shown in figure 1. This flow possesses some of the central features of the half zone
such as a return-flow basic state, a velocity profile for which is sketched in the figure.
The geometry allows for very large aspect ratios L/d and W/d to minimize the effects
of endwalls and sidewalls, respectively. By changing the depth of the layer, control
over the influence of buoyancy is also possible. A temperature gradient is produced
on the free surface by maintaining a temperature difference ∆T = TH − Tc > 0
between the two endwalls; the sidewalls and bottom are assumed adiabatic. Since
γ > 0, the thermocapillary stress pulls the free surface from the hot wall to the cold
wall. Buoyancy also serves to drive the flow in the same direction as thermocapillary
forces, but the case of greatest interest in this study is that for which thermocapillary
effects are dominant, implying thin liquid layers.

The strength of thermocapillary convection is characterized by the Marangoni
number,

MaL =
γd2∆T

µαL
, (1)

where µ is the dynamic viscosity, α is the thermal diffusivity, and L is the streamwise
domain length indicated in figure 1. This definition facilitates the comparison of
experimental results from different length slots, since the driving force for the flow
is ∆T/L; however, it differs from that used in theoretical treatments for layers of
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infinite horizontal extent, i.e.

Ma =
γd2 ∂T/∂x

µα
, (2)

which employs the temperature gradient along the interface. We shall refer to the
quantity defined in (1) as the laboratory Marangoni number, and indicate it by the
L subscript. Owing to the existence of thermal boundary layers near both the hot
and cold walls, MaL > Ma, where the value of ∂T/∂x employed in (2) is that in the
interior, ‘core’ region, of the flow, where the surface-temperature variation is nearly
linear. The definition of Ma provided in (2) permits easier comparison with available
theory for infinite layers, but requires an a posteriori measurement of ∂T/∂x. If one
believes that the instability of this core flow is responsible for observed oscillations in
very thin layers and that end effects serve merely to modify these, then Ma is the true
Marangoni number of interest since it is apparatus-independent. As layer depth d
decreases for fixed L (see figure 1), the core region of the flow exhibits a more nearly
linear variation of surface temperature with streamwise distance. Consequently, as
d/L → 0, we expect better agreement between experiment and theory due to the
existence of a more linear thermal field and also to the reduced effect of the endwalls
on the core velocity field.

Buoyancy effects can be quantified in terms of the dynamic Bond number,

B0D =
ρgβd2

γ
, (3)

which is a measure of the relative strength of buoyancy forces to thermocapillary
forces. Here ρ is the density, g is the gravitational acceleration, and β is the thermal-
expansion coefficient. The dynamic Bond number can be formed as Ra/Ma, where Ra
is a Rayleigh number which uses the same horizontal ∆T as the Marangoni number.

Also of importance in these flows is the Prandtl number, Pr = ν/α, where ν is the
kinematic viscosity. The Prandtl number for the liquid used in this study is O(10),
which implies a strong coupling between the thermal and momentum fields. Either of
the Marangoni numbers defined above may be expressed as the product of the Prandtl
number and a corresponding Reynolds number, i.e. MaL = ReLPr or Ma = RePr.

Since the thermocapillary-driven surface flow in the closed domain of figure 1
creates a pressure gradient to drive the return flow, the normal-stress boundary
condition on the free surface requires a non-zero surface curvature (Davis & Homsy
1980). However, in the limit of infinite mean surface tension the surface becomes
flat, and hence a constant-depth thermocapillary slot flow as sketched in figure 1 is
possible. Two dimensionless groups that indicate the amount of surface deflection are
the surface-tension number

S =
ρdσ

µ2
, (4)

and the capillary number,

Ca =
µU

σ
. (5)

A flat free surface is achieved if S → ∞, and Ca → 0. In the present experiments,
S and Ca are typically of the order of 25 000 and 0.001, respectively, indicating that
the assumption of a flat free surface is reasonable.

Pure thermocapillary convection and its counterpart including buoyancy have
received attention from both theoreticians and experimentalists. Sen & Davis (1982)
computed states of steady two-dimensional thermocapillary flow in slots, including
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free surface deformation. Smith & Davis (1983) investigated the stability of a return-
flow basic state in the core of such a slot to convective instabilities, finding a new form
of instability which they termed a hydrothermal wave. This mode is a temperature-
disturbance wave that propagates in a direction which depends on the liquid’s Prandtl
number. For small Pr, the waves propagate transversely across the layer and for
large Pr the direction is nearly opposite that of the surface flow. For intermediate
Pr, the hydrothermal waves are predicted to propagate obliquely against the surface
flow, and this behaviour is the expected one for the experiments presented in this
paper. The physics of the instability mechanism were later elucidated by Smith (1986)
for the small- and large-Pr limits in terms of the interaction between the thermal
field and the inertially (low Pr) or viscously (high Pr) dominated flow field. For
the Prandtl number (approximately 14) of the liquid used in these experiments, the
high-Pr mechanism is the more relevant one. In this limit the hydrothermal-wave
instability is sustained by the coupling between the convection of thermal disturbances
by the basic-state velocity field, and conduction of these disturbances to create new
instability-initiation spots. Extension of the Smith & Davis theory to account for the
influence of buoyancy forces has been done by Garr-Peters (1992a, b), Parmentier,
Regnier & Lebon (1993) and Mercier & Normand (1996).

Kirdyashkin (1984) was the first to analytically investigate combined thermo-
capillary–buoyancy-driven flow in a thin two-dimensional slot in the core region
away from the endwalls. He presents both velocity and temperature profiles, and also
includes experimental results obtained using ethyl alcohol in a 900 mm slot with
a typical layer depth of 10–20 mm. Steady-state profiles are fully developed in the
core region, agreeing well with analytical solutions. A parallel-flow core region is
typically observed in the middle 90% of the domain, with endwall influence extending
approximately three layer depths from each wall.

Villers & Platten (1992) conducted experiments and performed two-dimensional
numerical simulations of combined thermocapillary–buoyancy flow in a thin layer of
acetone (Pr = 4.2). A central finding of their work is that, as the Marangoni number
increases, the flow transitions from a single steady convection cell, to multiple steady
cells, and then to an oscillatory state with oscillation periods on the order of 5 s. De
Saedeleer et al. (1996) have performed more recent experiments in decane (Pr = 15),
observing also that the first transition is to a steady multicellular state. We shall see
from the present results that a combination of buoyancy and geometric factors are
likely to be responsible for this deviation from the Smith & Davis (1983) transition
scenario.

Schwabe et al. (1992) have documented similar behaviour in slot and annular-
pan geometries employing layer depths of ethanol (Pr = 17) on the order of a few
millimetres. Here, multiple steady multicellular structures are also observed. Transition
Marangoni numbers for the various regimes are determined; that from a single steady
cell to multiple steady cells occurs for Ma > 600, and the transition from multiple
steady cells to an oscillatory state is observed for Ma > 3000. Most of the reported
results are for the annular-pan geometry, for which no theoretical results are presently
available. Schwabe et al. (1992) report two different types of oscillatory flow states,
depending on the layer depth: for d < 1.4 mm, a short-wavelength azimuthally
travelling state is seen, while, for d > 1.4 mm, a long-wavelength state with a radially
propagating component is observed. Results of the present work could imply that the
difference between these two states may be related to an effect of the dynamic Bond
number. Unfortunately, very few results are reported for the rectangular geometry,
which is very similar to that employed for the present experiments. Those which are
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provided are for the single layer depth of 1.8 mm, which is likely to be too deep to
observe pure hydrothermal waves, as will be noted later.

The primary aim of the experiments described in this work is to examine com-
bined thermocapillary–buoyancy convection in thin horizontal layers, with the goal
of observing a pure hydrothermal-wave instability. This has been successfully ac-
complished. Since this instability is believed to be responsible for the degradation
of material grown via the float-zone process, the possibility of eliminating such os-
cillations is of interest. In Part 2 (Benz et al. 1998), the feasibility of suppressing
hydrothermal waves through active periodic heating of lines on the free surface is
demonstrated for the moderate-Pr liquid used in these experiments. However, it must
be emphasized that the hydrothermal-wave instabilities which occur in a liquid of
moderate Prandtl number are driven by a different mechanism (Smith 1986) from
that responsible for similar instabilities in low-Prandtl-number liquids characteristic
of liquid metals.

2. Experimental setup and techniques
2.1. Working liquid and apparatus

The working fluid used in these experiments is 1 cS Dow Corning silicone oil. It
has the desirable properties that it is transparent to visible light, allowing both flow
visualization and quantitative measurement using laser-Doppler velocimetry (LDV),
and has a free surface which is relatively resistant to contamination. In addition, we
shall examine the spanwise structure of the observed instabilities by visualizing the
thermal field of the free surface using an infrared camera. The chosen oil also has
an absorption band in the infrared within the detectable wavelength range of this
camera which is strong enough to allow infrared visualization of the liquid’s surface
temperature rather than that in the bulk.

The Prandtl number of the silicone oil used here is Pr = 13.9, indicating that the
thermal field is strongly coupled to the velocity field and, according to the theory
of Smith & Davis (1983), the preferred instability should be a hydrothermal wave.
The properties of the oil, coupled with the thin layers investigated here (O(1 mm)),
also ensure that the free surface of the layer is flat. A fluid possessing a low vapour
pressure is also desirable in thermocapillary flow experiments due to the likelihood
of evaporation at the hot end of the apparatus. The 1 cS oil was chosen after
experimenting with silicone oils with viscosities in the range of 0.65–10 cS in part
because it was found to have the fewest problems with evaporation.

The test cell was designed with the goal of observing a hydrothermal-wave insta-
bility; a schematic of the cell is shown in figure 2. The length L and width W of
the flow section are 30 mm and 50 mm, respectively; for the range of layer depths
examined in this work, these choices afford streamwise (x-direction) and spanwise
(y-direction) aspect ratios of 12 6 L/d 6 40 and 20 6W/d 6 67, respectively. These
permit both the establishment of a well-developed return-flow velocity profile in the
core region away from the walls and the accommodation of a relatively large number
of hydrothermal waves. For a liquid with Pr = 13.9, the linear-stability analysis
of Smith & Davis (1983) predicts a most-dangerous disturbance with a wavelength
of approximately 2.4d, propagating upstream at an angle of 20◦ to the streamwise
direction of the basic state. Thus, at least a dozen hydrothermal waves can exist in the
domain, and the large spanwise extent of the apparatus allows minimized impedance
in the oblique propagation direction.
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Figure 2. Experimental apparatus schematic (all dimensions are in mm):
(a) top view; (b) side view.

To provide an accurate determination of the depth d and its continuous variability,
the apparatus was designed with a movable base and reservoir, as seen in the side view
of figure 2(b). The base is a machined Plexiglas block which fits snugly within the cavity
created by the endwalls and sidewalls, yet has very small gaps (O(0.025 mm)) between
it and the vertical walls which permit the addition of liquid to the layer through
the reservoir. Three ball bearings mounted in the underside of the base ride on
micrometers, allowing depth adjustment of the flow domain to within 0.005 mm. The
apparatus is filled by injecting silicone oil into the reservoir, as suggested above. The
sidewalls are also constructed of Plexiglas in order to approximate adiabatic boundary
conditions. The endwalls, through which temperature-controlled water is circulated,
are aluminium to provide uniform constant-temperature boundary conditions at both
endwalls. Endwall temperatures are measured directly using thermocouples mounted
in the centre of each endwall a distance of 1 mm from the surface which is in contact
with the oil. The difference in endwall temperatures is able to be resolved to within
0.05 ◦C.

In order to achieve a definite and repeatable layer depth without a meniscus, a 90◦,
2 mm lip has been machined along the top of the sidewalls and endwalls which serves
to pin the contact line of the silicone oil. The upper surface of this lip is coated with
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a fluorad (3M Scotchguard) surface-modifying treatment, which inhibits the liquid
from wetting the lip. The existence of this lip with a pinned contact line is crucial to
the establishment of a layer of uniform depth. Levelling of the apparatus is achieved
by mounting it on a three-point micrometer-type tilt table. Adjustments to the tilt are
made while observing the reflections of a grid in the free surface near the lip regions,
and continue until the grid appears undistorted at all points along the lip, indicating
a flat free surface. Isolation from laboratory vibrations is achieved by securing the
tilt table to a commercial vibration–isolation table.

Two approaches were investigated for minimizing disturbances at the free surface
due to transient laboratory air currents. The first was to cover the apparatus with a
Plexiglas lid allowing a 5 mm thick gas layer above the free surface. However, this
method experienced problems with condensation of trapped silicone-oil vapour at the
cold wall. The formation of droplets on the cold horizontal lip ultimately results in the
loss of the pinned contact line, requiring the cessation of experiments and the cleaning
and re-coating of the apparatus. An alternative technique was successful, however. A
Plexiglas shroud 60 mm× 60 mm in cross-section and 100 mm in height was placed
around the flow cell. Since the upper end of the shroud was open to the laboratory,
over time liquid depletion due to evaporation results in a change in the position of the
free surface. Although the rate of evaporation is quite small (O(0.1 µl/s)), the resulting
depth change is unacceptable for these experiments. Hence, the evaporating silicone
oil was replaced by liquid supplied from a constant-head container to the reservoir
at the required rate. At the typical re-supply rate, the effective vertical velocity at the
free surface is roughly 0.07 µm s−1 or about 0.001% of the measured free-surface
speed, and is therefore felt to have a negligible impact.

Properties of the Dow Corning 200, 1 cS silicone oil used in these experiments were
obtained from the manufacturer, with the exception of the surface tension. These
data were measured directly by colleagues at the Microgravity Advanced Research
Support (MARS) Center in Naples, Italy using the wire loop method for the range of
the temperatures encountered in the present experiments. From these measurements,
a linear least-squares fit of the data yielded the result

σ(T ) = 17.237− 0.0755(T − T0) mN m−1 (6)

where T0 = 25 ◦C was the reference temperature about which experiments were
performed.

2.2. Experimental techniques

Four different experimental techniques were used to explore the flow states encoun-
tered in this work. Quantitative measurements of steady-state velocity fields, both
prior to and subsequent to the onset of instability, were performed with a TSI single-
component LDV. The flow was seeded with dilute amounts of silicon-carbide particles
with a mean diameter of 1.5 µm. Velocity-profile measurements through the depth (z)
of the layer allow one to see the degree to which the assumed return-flow basic state
is achieved; measurements as a function of streamwise (x) and spanwise (y) distance
permit an assessment of the influences of endwalls and sidewalls, respectively.

Flow-visualization experiments were performed using two techniques. For the first,
the flow was seeded with polystyrene microspheres with diameters ranging from 1–
15 µm and these were observed within a 1 mm thick laser-sheet illumination of an
(x, z)-plane. A Dage-MTI CCD camera was used to record the resulting images
for both steady and unsteady flow conditions. Since the particles were slightly more
dense than the test liquid, problems were experienced with keeping the particles from
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settling to the bottom. In a static fluid, particle settling time through the depth of
the layer (at 10 µm s−1 for an average 8 µm particle) is roughly two minutes; for
dynamic experiments, particles remain in suspension longer, but insufficiently long
for the method to be useful for extended periods of time. The second technique
employed was shadowgraphic visualization across (i.e. in the y-direction) the layer.
Thermally induced index-of-refraction variations, integrated through the span of the
layer, were likewise recorded using the CCD camera. While no attempt was made
to extract quantitative data from these results, the shadowgraphic technique is quite
sensitive, providing clear indications of both the existence of multicellular structures
and unsteadiness. It is the visualization method of choice for pinpointing the flow
transitions to be reported in §3. The only limitation of the technique, with regard to
the present experiments, is the fact that the mean temperature gradient bends the
light downward on its way to the camera so that, at some limiting depth, it is no
longer possible to obtain clean shadowgraphic images of the flow. For this apparatus
and the conditions of these experiments, this limiting depth is 0.75 mm.

The final technique used in these experiments was infrared thermography of the
free surface. The use of this technique was central to the investigation of oblique
hydrothermal-wave instabilities and to the suppression of these waves reported in
Part 2. In addition, it permits the observation of the structure of the multicellular
instability and its subsequent transition to oscillatory flow. These measurements were
performed using an Amber AE-4128 infrared camera employing a 128× 128 element
indium-antimonide focal-plane-array detector, which is sensitive to radiation in the
range of 1–5.5 µm. The output from the camera was captured with a variable-scan
frame grabber mounted in an IBM-compatible 386 computer, allowing it to be
displayed on a video monitor or recorded onto video tape. Further details on this and
all other techniques employed in these experiments may be found in Riley (1995).

3. Results
The combination of methods described above was used to investigate the flow

structures observable in the test cell over a range of conditions which was as large
as possible, given the inevitable constraints imposed by the apparatus, test liquid
and measurement techniques, some of which are described above. The results to
be presented here will focus on the return-flow basic state, its instability to both
hydrothermal waves and to a steady multicellular state, and the onset of time-
dependent flow from the steady multicellular state. The transition map for the states
observed is presented in terms of the laboratory Marangoni number MaL (equation
(1)), and true Marangoni number Ma (equation (2)) in figure 3.

There are three major categories into which the observations fall: steady, unicellular
flow (SUF); steady multicellular flow (SMC); and oscillatory flow. The last of these
categories, however, may be further divided depending on whether the state preceding
the onset of oscillatory flow was unicellular (leading to the hydrothermal waves (HTW)
predicted by Smith & Davis 1983) or multicellular (leading to oscillating multicellular
flow (OMC)). It should be pointed out that, while we have chosen to characterize the
transitional Marangoni numbers in terms of the dynamic Bond number, there is the
additional possible dependence of the transition sequence on the two aspect ratios
L/d and W/d. Since this apparatus does not allow these to be held constant as the
depth of the layer is varied, it is not possible to unequivocally attribute the observed
transition to multicellular flow to a particular effect.

As noted in §1, MaL exceeds Ma, owing to the existence of thermal boundary
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Figure 4. Normalized IR camera emission for the steady unicellular state (just prior to onset) along
the streamwise coordinate in the centre of the span for a layer of (a) 0.75 mm thickness; and (b)
2.5 mm thickness.

layers at the temperature-controlled endwalls, particularly for moderate-to-high-Pr
liquids such as the one employed here. These boundary-layer effects become more
pronounced as the layer depth increases, as seen in figure 4, which shows a normalized
emission from the IR camera along a line in the middle of the span of the layer as
a function of streamwise distance x for two different layer depths. For both cases in
figure 4, the emission profiles correspond to a state of steady unicellular flow just prior
to the appearance of either hydrothermal waves (figure 4a) or steady multicellular
flow (figure 4b).

In order to correct the Marangoni number for this effect, the emission data in
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MaL Ma MaL Ma MaL Ma
d (mm) BoD (HTW) (HTW) (SMC) (SMC) (OMC) (OMC)

0.75 0.080 355 324 n.o. n.o. n.o. n.o.
1.00 0.142 440 366 n.o. n.o. n.o. n.o.
1.25 0.222 609∗ 476∗ 580 453 n.o. n.o.
1.375 0.269 n.o. n.o. 595 451 677 503
1.50 0.320 n.o. n.o. 595 452 871 621
1.75 0.435 n.o. n.o. 619 455 1185 842
2.00 0.569 n.o. n.o. 658 459 n.i. n.i.
2.25 0.720 n.o. n.o. 711 482 n.i. n.i.
2.50 0.889 n.o. n.o. 822 547 n.i. n.i.

Table 1. Transitional Marangoni numbers versus depth and dynamic Bond number for transitions
to hydrothermal waves (HTW), steady multicells (SMC) and oscillating multicells (OMC). The
asterisks mark a case which is not a true transition to HTW, n.o. denotes not observed, and n.i. not
investigated.

the interior region of the flow, i.e. 5 6 x 6 25 mm, are fit with a straight line,
which, along with the calibration data (including the known measured temperatures
of the endwalls), is used to extract ∂T/∂x for the core region. This same procedure is
employed for determining the core temperature gradient used to correct the transition
map for the steady → oscillatory multicellular regime as well, although the data in
this case are of the type seen in figure 10(a). In all cases, the temperature gradient is
determined for a state just prior to the onset of the transitional state. De Saedeleer
et al. (1996) also recognized the importance of determining the core temperature
gradient, which they did using a thermocouple inserted below the free surface.

One advantage to the present method for determining the true temperature gradient
∂T/∂x occurring in the core of the layer is that there is no need to determine
the effective emissivity of the liquid or to calibrate the grey-level values against a
blackbody emission source. By taking the ratio of the linear fit to the grey-level data
in the core to the gradient represented by the maximum and minimum grey levels
occurring at the endwalls of the same data, the absolute values of the free-surface
temperature need not be determined.

Since the determination of Ma requires an a posteriori measurement of the core
surface-temperature distribution, this was not necessarily done for cases not associated
with transitions between states. Rather, the more convenient laboratory Marangoni
number MaL is reported in the following sections when comparing to specific ex-
perimental cases. The transitional values of both Marangoni numbers are reported
as a function of both the dimensional depth and dimensionless BoD in figure 3 and
table 1.

3.1. Steady unicellular flow

Of interest in characterizing this state is determining the degree to which the apparatus
utilized for these experiments permits the establishment, in the core region away from
vertical boundaries, of the return-flow basic state assumed in the theoretical analysis
of Smith & Davis (1983). To this end, detailed LDV measurements have been
performed for two states. The first case, with (MaL, BoD) = (350, 0.142) corresponds
to a layer of 1.0 mm depth at a Marangoni number which is 80% of the value at
which transition to the hydrothermal-wave state was observed. The second case, with
(MaL, BoD) = (475, 0.320), is for a 1.5 mm layer depth, which first experiences a
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Figure 5. Horizontal ‘surface’ velocity near the hot wall: (a) d = 1.0 mm; (b) d = 1.5 mm.

transition to steady multicellular flow. The chosen Marangoni number is the same
fraction (80%) of the transition value to the new state as for the first case.

Figures 5 and 6 show the variation of the x-component of ‘surface’ velocity
near the hot and cold walls, respectively, for the two cases. These measurements
were performed with the LDV fibre-optic head oriented above the layer, looking
downward. It is estimated (Riley 1995) that the centre of the measurement volume
(an ellipsoid with a major axis of 120 µm) is roughly 60 µm below the free surface.
Measurements for both hot walls show an overshoot of the core velocity followed by
an equilibration which takes place within a distance x/d = 3 in both cases. At the
cold walls, no such overshoot is observed and the effect of the endwall is constrained
to a region of approximately x/d = 2/3 in length.

It is possible that the observed overshoot and recovery at the hot wall are due
to the formation of a strong roll cell there, in some sense a precursor to the steady
multicellular state to be discussed in §3.3. Such a cell was observed even for low-BoD
cases at Marangoni numbers immediately preceding the transition to hydrothermal-
wave instability. The overshoot in velocity is consistent with LDV measurements and
calculations performed by Villers & Platten (1992) for flows of acetone (Pr = 4.24)
in containers of modest aspect ratio.

Another numerical study which has relevance to the endwall region velocity mea-
surements is that of Ben Hadid & Roux (1990), who performed numerical calculations
of thermocapillary convection in a long horizontal layer for a low-Prandtl-number
fluid. Since Pr is assumed to be small, the momentum and thermal fields are de-
coupled, and the case of a constant applied shear stress at the free surface was
considered. Thus, there are significant differences between this work and the high-Pr
situation considered presently. One of the cases computed by Ben Hadid & Roux
has an aspect ratio L/d = 25, which is comparable to the present 1 mm and 1.5 mm
layers which have L/d = 30 and 20, respectively. For the lowest-Reynolds-number
case (Re = 66.7) presented by Ben Hadid & Roux, the free-surface velocity increases
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Figure 6. Horizontal ‘surface’ velocity near the cold wall: (a) d = 1.0 mm; (b) d = 1.5 mm.

monotonically away from the hot wall and decreases in a similar fashion near the
cold wall, exhibiting no overshoot at either end of the slot, contrary to what has
been observed in the present experiments, although this is expected in light of the
free-surface conditions assumed in the calculations. The two experimental cases under
discussion correspond to Reynolds numbers of Re = 23.4 and 34.1, respectively, for
the 1.0 mm and 1.5 mm layer depths.

Measurements of surface velocity (similar to those of figures 5 and 6) made in the
vicinity of the adiabatic sidewalls indicate that the free-surface velocity reaches its
core value much more rapidly than observed near the heated endwalls (Riley 1995).
For the cases examined, this adjustment at the streamwise centre of the layer takes
place within a single layer depth.

In the core region, away from both endwalls and sidewalls, LDV measurements
made through the layer indicate the degree to which the return-flow basic state is
attained. The quadratic profile of Smith & Davis (1983) is modified by the existence of
buoyancy. Solution of the two-dimensional Boussinesq equations for fully developed
flow in the core yields the horizontal velocity,

U(z) = 3
4
z2 − 1

2
z + BoD

(
− 1

6
z3 + 5

16
z2 − 1

8
z
)
, (7)

where length has been scaled by the depth d and velocity by the thermocapillary
velocity

Us =
γ(∂T/∂x)d

µ
. (8)

Figure 7 shows measured and theoretical profiles of U(z) for the two layers con-
sidered in this section. Measurements were performed by having the two intersecting
beams of the LDV enter the flow field through one of the adiabatic sidewalls. This
orients the major axis of the ellipsoidal measurement volume normal to the z-direction
in which the largest velocity gradients occur. Velocity-gradient broadening is there-
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Figure 7. Basic-state velocity profiles for: (a) d = 1.0 mm, Ma = 350; open circles, LDV measure-
ments; solid line, theory for BoD = 0; (b) d = 1.5 mm, Ma = 475; open circles, LDV measurements;
solid line, theory for BoD = 0.32.

fore confined to the 40 µm waist dimension of the measurement volume. In order
to obtain data near the bottom (free surface) of the layer, the plane of the beams
entering through the sidewall is angled slightly downward (upward) to position the
measurement volume as close as practicable to the location of interest. Near the
free surface, where the uncertainty in the measurement is largest, the size of the
standard deviation in the dimensional velocity for the 1.0 mm layer of figure 7(a) is
O(0.2 mm s−1), compared with a maximum measured speed of roughly 4 mm s−1.
In the cases shown in figure 7, the velocity has been scaled by its maximum value
at the free surface, as opposed to the thermocapillary velocity scale. For the thinner
layer, the comparison between the measurements and theory is made for BoD = 0,
indicating the degree to which this layer conforms to the theoretically assumed basic
state of Smith & Davis (1983). In both cases, the comparison between measured data
and theoretical profiles is excellent.

One final question regarding the unicellular state observed in these experiments
is the degree to which flow in the core region is independent of the x-direction
of figure 1. In order to assess this, measurements of the maximum value of the
interior (backflow) velocity were performed at several locations between the two
heated endwalls, as shown in figure 8. The points displayed as circles are all scaled
using a constant value of Us (equation (8)) corresponding to the conditions at the
rightmost cold point, where the properties are computed using a conduction solution
for the temperature. These data indicate the existence of a fair amount of variation
between the endwalls. Speculating that a large part of this variation may be due to
the temperature dependence of viscosity, we have adjusted the velocities depending on
the local value of Us, computed using the same conduction solution for temperature.
The adjusted values, shown in figure 8 as squares, show much less variation, lending
some credence to the hypothesis.
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Figure 9. Instantaneous thermograph of hydrothermal waves on a 1.0 mm deep layer, viewed from
above. The hot and cold walls are at the left- and right-hand sides of the figure, respectively, and
the hydrothermal waves are propagating from lower-right to upper-left.

3.2. Hydrothermal waves

The state of greatest interest in the present experiments is that which results from
instability of the unicellular basic state at low values of the dynamic Bond number.
These hydrothermal waves are travelling thermal waves which, for the Prandtl number
of the liquid used in these experiments, propagate obliquely, with a component which
opposes the direction of free-surface motion. For Pr = 14 and BoD = 0, the theory of
Smith & Davis (1983) predicts a wavelength of approximately 2.5d and a propagation
angle Ψ ≈ 20◦ with respect to the negative x-direction. In these experiments, the
hydrothermal-wave transition is observed for BoD 6 0.22, corresponding to layer
depths d 6 1.25 mm.

The onset of time-dependence in this case is an especially sharp one to which
the shadowgraphic visualization technique is particularly sensitive. The qualitative
stucture of the flow, when viewed from above with infrared thermography is clearly
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along a line perpendicular to hydrothermal wave fronts.

in agreement with that predicted by Smith & Davis (1983). This is shown in figure 9
for a layer of 1.0 mm depth at a condition which is slightly supercritical. In accordance
with the nonlinear theory of Smith (1988), only one of the two possible families of
hydrothermal waves is observed. If the apparatus is level and the base and free
surface are parallel (which is essential to the attainment of this state), either of these
families may appear. It is clear from this thermograph that the hydrothermal waves
completely fill the domain with little influence from the endwall boundaries. The same
is true of the sidewall boundaries, as well, although not observable in this figure;
they are constructed from Plexiglas, and hence behave as nearly adiabatic boundaries.
Although very difficult to observe in figure 9, there does exist a single steady roll
cell located at (and parallel to) the hot wall toward which the hydrothermal waves
propagate. This cell is consistent with its appearance even in the states which have
been termed unicellular. It is also apparent from the figure that the wavelength
increases slightly as the waves propagate across the layer from the cold wall to the
hot one. This could be a ramification of the fact that the core flow is changing with x
due to the temperature dependence of viscosity, as discussed earlier, or the fact that
the wavelength depends on the Prandtl number, which also varies locally with the
temperature.

The temperature perturbations associated with these hydrothermal waves may be
obtained from the infrared camera data. Figure 10 shows both the temperature
variation (figure 10a) and perturbations (figure 10b) obtained by subtracting the
mean-temperature variation along a line perpendicular to the wave fronts for data
extracted from the thermograph of figure 9. From these data, it is seen that the
amplitude of the temperature perturbation is not constant, but increases in the
direction of propagation from roughly 0.2 ◦C to 0.35 ◦C peak-to-peak.

The structure of the hydrothermal-wave instability is quantified in terms of wave-
length λ, frequency f, wave speed c, and angle of propagation Ψ for the three cases
examined in this work. All of the quantities were extracted from the infrared images
of the free-surface temperature fields at values of ∆T slightly above critical. Dimen-
sional values of these quantities are presented in table 2; dimensionless values of λ, f
and c are given in table 3, where wavelength has been scaled by depth, wave speed
by the thermocapillary velocity scale Us (equation (8)) and frequency by Us/d. The
dimensionless wavelength is seen to be comparable to the value λ/d = 2.4 predicted
by the linear-theory zero-gravity analysis of Smith & Davis (1983) and is nearly
independent of the depth of the layer. The variation of the other quantities with BoD
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d (mm) λ (mm) f (Hz) c (mm s−1) Ψ (deg.)

0.75 1.95 0.98 1.91 27.9
1.00 2.58 0.57 1.47 23.2
0.25 3.37 0.38 1.28 22.4

Table 2. Dimensional wavelength, frequency, phase speed and propagation angle
as a function of layer depth for hydrothermal-wave cases.

BoD λ/d fd/Us c/Us

0.080 2.60 0.0236 0.0614
0.142 2.58 0.0217 0.0561
0.222 2.70 0.0174 0.0469

Table 3. Scaled wavelength, frequency and phase speed as a function of dynamic
Bond number for hydrothermal-wave cases.

is more substantial, so that comparison with a zero-gravity theory is less appropriate.
A linear-stability analysis incorporating buoyancy has been performed for the Smith
& Davis problem (Riley & Neitzel 1998) and a comparison of these results with the
present experimental ones is discussed in detail there. Suffice it to say here that the
linear-theory critical Marangoni number, MaC (plotted as the symbol × in figure 3),
agrees almost exactly with MaL for the smallest value of BoD measured in these
experiments, and that the trend in MaC with increasing BoD is the same for both
theory and experiment.

Previous researchers have measured oscillations in thin thermocapillary-driven
liquid layers, but have not provided conclusive evidence of the hydrothermal-wave
instability. The experiments of Villers & Platten (1992) in a thin acetone layer (Pr = 4)
utilize one-point LDV measurements to determine whether the flow at a single point
in the layer was steady or oscillatory. In this manner they map out a boundary
in (Ma, Ra)-space denoting the steady/oscillatory transition. No discussion on the
structure of the flow producing the oscillations is given, since their measurements
do not provide that type of information. Much of their data are for relatively thick
layers (d > 2.0 mm, BoD > 0.362), and hence the observed oscillations are probably
the oscillating multicellular flows to be discussed in §3.4, rather than hydrothermal
waves. The study by De Saedeleer et al. (1996) reports the first instability in the
form of a steady structure which then transitions to an oscillatory state. However,
calculation of the Bond number associated with their experiments reveals that it is
in excess of three times the maximum value determined for the first transition to a
hydrothermal-wave instability in the present experiments. In addition, their spanwise
aspect ratio was quite small, which may have adverse effects for oblique waves.

Schwabe et al. (1992) discuss two different types of oscillatory thermocapillary flows
in a thin annular geometry, so-called short- and long-wavelength instabilities. Their
short-wavelength instability occurs in layers of d 6 1.4 mm (BoD 6 0.18), and has a
wavelength of λ ≈ 6d, for a 1 mm thick layer, whereas λ = 2.58d for the 1 mm layer
of the present study. The short-wavelength instability is investigated through single-
point thermocouple measurements, and a shadowgraph technique that illuminates the
oscillating meniscus formed at the lip of the inner wall of the annulus. The time
variation of the meniscus at the lip appears wave-like, but no flow visualization in the
bulk of the fluid is available. The dimensionless wave speed of the short-wavelength



Instability of thermocapillary–buoyancy convection. Part 1 159

instability is c = 0.06 for a 1 mm thick layer, which is in agreement with the value of
c = 0.056 for the 1 mm layer of the present study. Thus, it is possible that Schwabe et
al. did indeed observe hydrothermal waves in an annular geometry, but the evidence
is not completely conclusive on this point.

Ezersky et al. (1993) claim to have produced hydrothermal waves in 5 cS silicone-oil
layers in the range of 1.2 6 d 6 3.1 mm, but results are presented only for a 3.1 mm
layer. The flow is investigated using a shadowgraphic technique, and an image is
presented which is reportedly of a hydrothermal wave. For a layer depth of 3.1 mm,
BoD ≈ 1.4, which is much too large for the generation of pure hydrothermal waves
according to the present results. Ezersky et al. present a shadowgraph image showing
a disturbance with a wavelength of λ/d ≈ 1.3, which is in the range of the steady
multicellular flow structure discussed in the next subsection.

In a similar study, Daviaud & Vince (1993) report an observed travelling-wave
disturbance in 0.65 cS silicone oil, for layer depths of 0.8 6 d 6 2.5 mm. However,
contrary to the results of the present study, the angle of propagation of the waves
was found to be perpendicular to the applied temperature gradient (Ψ = 90◦). This
could be due to the fact that their rectangular domain is quite large in the spanwise
direction (200 mm), and relatively short in the streamwise direction (10 mm) in
which the temperature gradient is applied. They also provide a graph of the critical
applied-temperature difference (∆Tcrit) as a function of layer depth, which shows
∆Tcrit decreasing with increasing depth for 0.8 6 d 6 1.4 mm, followed by an increase
for depths up to 2.5 mm. This behaviour is inconsistent with the results of the present
study in which ∆Tcrit decreases monotonically (MaL ∝ d2), and could be due to the
difference in the geometries of the two flow domains.

3.3. Steady multicellular flow

The steady multicellular state observed at higher values of the dynamic Bond number
are spanwise-uniform co-rotating rolls. Figure 11 shows the structure of this flow as
observed by the three types of visualization techniques described in §2. In figure 11(a),
a time exposure of sheet-illuminated particles clearly identifies the cellular structure
and the associated saddle points in a layer of 2.0 mm depth; figure 11(b) shows an
instantaneous snapshot of a combined shadowgraph/particle image; and figure 11(c)
provides an overhead view of the temperature field visualized with infrared thermog-
raphy. This last photograph clearly illustrates the two-dimensional nature of this flow
state and the relative lack of influence of either sidewalls or endwalls.

Although it is impossible to ascertain from the thermographic image of figure 11(c),
the strength of the cells decreases as one moves away from the hot wall. This
may be observed by examining the streamwise variation of the horizontal velocity
at a fixed vertical location, as shown in figure 12. This result is for a 1.5 mm
layer depth at a value of MaL = 800, which is significantly higher than the steady
multicellular-flow transition value of MaL = 595 for this BoD . Note that, even at this
large temperature difference, the multicells decay rapidly in strength, vanishing at a
distance of roughly x/L = 2/3. Also of note is the fact that the average velocity
decreases when moving toward the cold wall, consistent with the earlier observation
of a temperature-dependent viscosity effect.

The primary quantitative result to be obtained for this flow state, in addition
to the transition Marangoni number, is the dependence of the wavelength of the
multicellular state on the dynamic Bond number. This is provided in figure 13, and
exhibits relatively smooth, yet significant, variation. Once again, it is not possible
to determine whether these observations are due to buoyancy or aspect-ratio effects.
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(a)

(b)

(c)

Figure 11. Steady, multicellular flow as visualized by: (a) particle-path time exposure for a 2.0 mm
layer depth; (b) instantaneous shadowgraph with particles for a 1.5 mm layer depth; (c) thermograph
for a 1.5 mm layer depth.
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Figure 12. Horizontal velocity at z/d = 0.9 for steady multicellular flow in a
1.5 mm deep layer at Ma = 800.

However, the degree of smoothness of the results indicates that the observed increase is
certainly not due to abrupt quantum changes in the number of cells in the apparatus.

3.4. Oscillating multicellular flow

If the steady multicellular flow states of §3.3 are driven vigorously enough by increas-
ing the Marangoni number, a second transition will take place to a time-dependent
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Figure 14. Instantaneous shadowgraphs at three instants of time (t is increasing
from top to bottom) for the oscillatory multicellular state.

multicellular state. This state, although oscillatory, is not a pure travelling-wave state.
This is evidenced by the sequence of shadowgraphs shown in figure 14, which shows
the flow in a central portion of the apparatus. Time is increasing from top to bottom
in the sequence, and the hot wall is to the left. Upon examining this sequence, there
does not appear to be a well-defined wave speed associated with this state; there
are pronounced differences between what is observed here and similar shadowgraphs
for the pure hydrothermal-wave state of §3.2 (see Riley 1995). It is difficult to draw
definite conclusions from such shadowgraph images, however, since the shadowgraph
is integrated through the spanwise extent of the domain.

The free-surface thermograph shown in figure 15(a) provides greater insight into
the structure of this flow. It is clear that there remain strong steady multicellular
structures near the hot wall and a pair of oblique waves which appear to propagate
through them, beginning at the cold wall. This is more evident in figure 15(b), in
which data appearing in figure 15(a) have been enhanced through processing with an
edge-finding filter, and subsequent binary windowing. A chevron pattern is observed
near the cold wall which is suggestive of two interacting hydrothermal waves. In
the absence of buoyancy, the nonlinear theory of Smith (1988) states that a single
family should be observed (such as seen in figure 9) following instability of the pure
return-flow basic state. However, the oscillatory instability observed here for large
dynamic Bond numbers is reached from a different basic state (steady multicellular
flow) than that considered by Smith, so his results are not strictly applicable. The
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(a)
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Figure 15. Instantaneous thermograph (a) and enhanced image (b)
for the oscillatory multicellular state.

image shows that the steady multicells are still established at the hot wall, despite the
vigorous oscillatory convection on the cold-wall side of the domain.

An oscillatory multicellular state is also observed by Schwabe et al. (1992) in a
rectangular domain, but the reported results for that apparatus are sparse. They note,
however, that a 1.8 mm deep layer of ethyl alcohol experiences a transition from a
unicellular flow to a steady multicellular flow, and subsequently to a time-dependent
flow at MaL = 3000. Villers & Platten (1992) make no attempt to examine the
structure of their oscillatory flow states in acetone, but for their layer thicknesses
(d > 2.0 mm, typically), the results of the present study strongly suggest that they are
actually observing oscillating multicellular flow.

4. Discussion
Experiments have been conducted to investigate the hydrothermal-wave instability

of thermocapillary convection in a thin liquid layer first predicted by Smith & Davis
(1983). The results of these experiments offer the first conclusive laboratory proof of
the existence of this instability; results of previous experiments conducted in deeper
layers have been clouded by the presence of buoyancy, geometric effects, or both.
Present results for BoD = 0.080 show a transition to oscillatory flow at a Marangoni
number of Ma = 324, compared with the theoretical result (for a Prandtl number
corresponding to the oil of these experiments) of Ma = 295 for BoD = 0; moreover,
the results of figure 3 indicate that the experimental results asymptotically approach
the theoretical limit as the Bond number decreases. The transition to hydrothermal
waves from a state of steady unicellular flow (the core of which is shown to be an
excellent approximation to the return-flow basic state of Smith & Davis), is a very
sharp one.

In contrast, experiments performed with ‘deep’ layers do not experience a direct
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transition from the return-flow basic state to oscillatory flow, but rather first exhibit
a steady multicellular structure. Whether this state is the result of instability due to
buoyancy or due to finite-geometry effects (e.g. such as the imperfect bifurcation of
Taylor–Couette → Taylor-vortex flow in finite annuli) is still uncertain. While even
the smallest streamwise aspect ratio (L/d = 12) encountered in these experiments is
comparatively large, since the present apparatus does not permit changing the depth
of the liquid layer without also modifying the aspect ratio of the flow domain, these
results alone are insufficient to answer this question. Recently, Cramer, Schneider
& Schwabe (1997) have proposed a mechanism for the appearance of multicellu-
lar structures which involves the deceleration of flow on the free surface and the
establishment of an accompanying bulk-pressure distribution which stimulates the
formation of multiple cells. Certainly, near the cold wall, such a rapid deceleration
does occur in the present experiments (as shown in figure 6), but then one might
question why the thinner of the two layers shown in figure 6 (with the higher de-
celeration) first transitions to a hydrothermal-wave state, rather than to a steady
multicellular state. Additional numerical and laboratory experimentation is necessary
to completely answer this question.

Increasing the Marangoni number from a state of steady multicellular flow ul-
timately results in the transition to time-dependent flow. In appearance, this flow
resembles a pair of obliquely propagating hydrothermal waves riding on top of the
steady multicellular flow. Since the primary aim of the present experiments was the
characterization (and suppression, in Part 2) of the hydrothermal-wave instability,
attention was restricted in the case of the oscillating multicellular state to the de-
termination of the transitional Marangoni numbers shown in figure 3 and listed in
table 1.
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Schwabe, D., Möller, U., Schneider, J. & Scharmann, A. 1992 Instabilities of shallow dynamic
thermocapillary liquid layers. Phys. Fluids A 4, 2368.

Schwabe, D., Scharmann, A., Preisser, F. & Oeder, R. 1978 Experiments on surface tension
driven flow in a floating zone melting. J. Cryst. Growth 43, 305.

Sen, A. K. & Davis, S. H. 1982 Steady thermocapillary flows in two-dimensional slots. J. Fluid
Mech. 121, 163.

Shen, Y., Neitzel, G. P., Jankowski, D. F. & Mittelmann, H. D. 1990 Energy stability of
thermocapillary convection in a model of the float-zone crystal-growth process. J. Fluid Mech.
217, 639.

Smith, M. K. 1986 Instability mechanisms in dynamic thermocapillary liquid layers. Phys. Fluids
29, 3182.

Smith, M. K. 1988 The nonlinear stability of dynamic thermocapillary liquid layers. J. Fluid Mech.
196, 391.

Smith, M. K. & Davis, S. H. 1983 Instabilities of dynamic thermocapillary liquid layers. Part 1.
Convective instabilities. J. Fluid Mech. 132, 119.

Velten, R., Schwabe, D. & Scharmann, A. 1991 The periodic instability of thermocapillary
convection in cylindrical liquid bridges. Phys. Fluids A 3, 267.

Villers, D. & Platten, J. K. 1992 Coupled buoyancy and Marangoni convection in acetone:
experiments and comparison with numerical simulations. J. Fluid Mech. 224, 487.

Wanschura, M., Shevtsova, S., Kuhlmann, H. C. & Rath, H. J. 1995 Convective instability
mechanisms in thermocapillary liquid bridges. Phys. Fluids 7, 912.


